Categorias: Matemática

Triângulo: propriedades, tipos e fórmulas.

Está na hora de saber tudo sobre triângulos! Os triângulos são as estrelas principais das questões de Geometria no Enem e outros vestibulares. E isso não é à toa: eles são objetos matemáticos super importantes e muito estudados.

As propriedades dos triângulos datam do século IV a.C., com Pitágoras e seus discípulos, e são essenciais para o estudo da Geometria hoje. Vamos lá!

Propriedades dos triângulos

Algumas propriedades valem para todos os tipos de triângulos:

  • têm três vértices;
  • têm três medianas (segmento de reta que vai do vértice até o ponto médio do lado oposto) que se interceptam em um único ponto, chamado de centro do triângulo;
  • o lado menor é sempre oposto ao menor ângulo interior;
  • o lado maior é sempre oposto ao maior ângulo interior;
  • a soma dos ângulos internos é 180º;
  • a soma dos ângulos externos é 360º.

Condição de existência de um triângulo

Não é qualquer conjunto de três medidas que é capaz de formar um triângulo. Para que isso ocorra, é preciso que seja respeitada a chamada condição de existência, que diz que a medida de qualquer um dos lados do triângulo tem que ser menor do que a soma das medidas dos outros dois e, ainda, maior que a diferença entre elas.

Ou seja:

Em um triângulo com lados a, b, c, temos:

  • |b – c| < a < b + c
  • |a – c| < b < a + c
  • |a – b| < c < a + b

Exemplo da condição de existência

Vamos testar a validade dessa declaração? Peguemos o triângulo “mais famoso de todos”, o triângulo retângulo 3, 4, 5. Repare que o triângulo obedece o Teorema de Pitágoras: 3² + 4² = 9 + 16 = 25 = 5². Agora:

  • 5 – 4 = 1 < 3 < 4 + 5 = 9
  • 5 – 3 = 2 < 4 < 3 + 5 = 8
  • 4 – 3 = 1 < 5 < 3 + 4 = 7

Vemos que essas medidas obedecem a condição de existência.

Agora vamos pegar um conjunto diferente de medidas, por exemplo, 3, 4, 8. Será que esses lados formam um triângulo? Vejamos:

8 < 3 + 4? Não!

Para testar, basta ver a soma das medidas menores. Se a soma for menor que a medida maior, essas medidas não podem formar um triângulo. Por um simples motivo: a linha reta é a menor distância entre dois pontos, portanto, o lado do triângulo é a menor distância entre aqueles dois vértices.

A soma dos outros dois lados formam um desvio, portanto tem que ser maior do que o lado em si, que é a menor distância entre aqueles pontos. Se o caminho do desvio é menor que a linha reta, esse triângulo não existe.

Tipos de triângulos

Veremos a seguir a classificação dos triângulos de acordo com as medidas de seus lados e seus ângulos internos.

Triângulo equilátero

Um triângulo é chamado equilátero quando seus três lados têm medidas iguais. Isso provoca que seus ângulos também sejam iguais, ou seja, de 60º cada, já que a soma deve ser 180º.

Triângulo isósceles

Um triângulo é chamado isósceles quando têm dois lados iguais e um diferente. Isso também significa que esse triângulo tem dois ângulos iguais e um diferente. O lado menor geralmente é usado como base do triângulo.

Triângulo escaleno

Um triângulo é chamado escaleno quando nenhum de seus lados são iguais. Isso quer dizer que seus três ângulos também são diferentes.

Triângulo retângulo

Um triângulo é chamado retângulo quando tem um ângulo reto, ou seja, de 90º. Em particular, a medida de seus lados obedecem o Teorema de Pitágoras: a² + b² = c², onde c é o maior lado e lado oposto ao ângulo reto. Por causa disso, esses triângulos também são chamados de triângulos pitagóricos.

Triângulo obtusângulo

Um triângulo é chamado obtusângulo. ou simplesmente obtuso, quando um de seus ângulos é maior que 90º. Como a soma dos ângulos internos é 180º, isso significa que os outros dois ângulos desse triângulo são menores que 90º.

Triângulo acutângulo

Um triângulo é chamado acutângulo quando todos seus ângulos internos são menores que 90º.

Veja que as definições quanto aos ângulos não excluem as definições quanto às medidas dos lados. Por exemplo: um triângulo equilátero é acutângulo, porque todos seus ângulos medem 60º.

Fórmulas dos triângulos

Vejamos agora algumas fórmulas úteis e importantes dadas as propriedades dos triângulos.

Área do triângulo

Várias fórmulas podem ser usadas para calcular a área do triângulo, dependendo de quais informações sobre ele você tem. Se você tiver todas as informações, isto é, todos os lados e todos os ângulos, a maneira mais simples é:

  • A = b*h/2, onde b é a base e h é a altura, ou seja, o segmento de reta que leva do vértice oposto à base até a base e forma um ângulo reto com a base.
  • Área de um triângulo equilátero de lado L: A = (√3 * L²)/4, já que nesse caso b = L/2 e h = √3 * L/2

Mas na falta de algumas informações, outras formas de calcular a área podem ser mais úteis:

  • S = b * c * sin (A)/2, onde A é o ângulo oposto ao lado a e b e c são os outros dois lados.
  • Fórmula de Heron: S = √, onde p é o semiperímetro, ou seja, metade do e a, b, c são os lados.
  • Fórmula do raio circunscrito: S = a*b*c/4 r, onde a, b, c são os lados e r é o raio da circunferência circunscrita

Perímetro do triângulo

O perímetro do triângulo é a soma das medidas dos seus lados.

P = a + b + c

Caso você não tenha todas as medidas dos lados, é possível usar as propriedades ou teoremas para encontrar os lados faltantes

Semelhança de triângulos

Dois triângulos serão ditos triângulos semelhantes se existe proporcionalidade entre seus lados e seus ângulos são congruentes. Ou seja, se temos um triângulo com lados a, b, c e outro com lados homólogos (opostos ao mesmo ângulo) com lados d, e, f, eles serão semelhantes se:

a/d = b/e = c/f = k, onde k é a constante de proporcionalidade.

Mas não precisamos testar todos os lados para ver se os triângulos são semelhantes. Existem três casos simples de semelhança de triângulos:

  • Lado Lado Lado (LLL): dois triângulos são semelhantes se possuem três lados proporcionais (definição).
  • Ângulo ângulo (AA): dois triângulos são semelhantes se possuem dois ângulos correspondentes congruentes.
  • Lado Ângulo Lado (LAL): dois triângulos são semelhantes se possuem dois lados proporcionais e o ângulo entre eles for congruente.

Exercícios

Se você está procurando exercícios online para testar seus conhecimentos sobre triângulos, que tal experimentar os exercícios da plataforma Stoodi?

Para estudar para o Enem, basta se cadastrar gratuitamente na plataforma Stoodi e aproveitar as videoaulas e os exercícios!

Stoodi

Postagens recentes

Vestibular UFRGS 2025: o Guia Completo!

A Universidade Federal do Rio Grande do Sul é uma instituição de Ensino Superior de…

% dias atrás

O que é o contratualismo e o que defende?

Imagine um mundo sem leis, autoridades ou estruturas que guiem a convivência entre as pessoas.…

% dias atrás

Present Continuous: usos e estruturas

O Present Continuous é um dos tempos verbais do inglês utilizado para descrever ações que…

% dias atrás

Descomplicando as Polias ou Roldanas: Guia Prático de Mecânica

Quando falamos de mecânica, polias e roldanas são conceitos que aparecem com frequência. Trata-se de…

% dias atrás

Vestibular UFSC 2025: o guia completo!

A Universidade Federal de Santa Catarina (UFSC) é uma instituição de ensino superior pública e…

% dias atrás

Vestibular UECE 2025: o Guia Completo

Descubra tudo sobre o vestibular UECE 2025 e se prepare para arrasar nas provas e…

% dias atrás